A Multivariable Adaptive Control Approach for Stabilization of a Cart-Type Double Inverted Pendulum

نویسندگان

  • I. Hassanzadeh
  • A. Nejadfard
چکیده

This paper considers the design and practical implementation of linear-based controllers for a cart-type double inverted pendulum DIPC . A constitution of two linked pendulums placed on a sliding cart, presenting a three Degrees of Freedom and single controlling input structure. The controller objective is to keep both pendulums in an up-up unstable equilibrium point.Modeling is based on the Euler-Lagrange equations, and the resulted nonlinear model is linearized around upup position. First, the LQR method is used to stabilize DIPC by a feedback gain matrix in order to minimize a quadratic cost function. Without using an observer to estimate the unmeasured states, in the next step we make use of LQG controller which combines the Kalman-Bucy filter estimation and LQR feedback control to obtain a better steady-state performance, but poor robustness. Eventually, to overcome the unknown nonlinear model parameters, an adaptive controller is designed. This controller is based on Model Reference Adaptive System MRAS method, which uses the Lyapunov function to eliminate the defined state error. This controller improves both the steady-state and disturbance responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANFIS Control Double-Inverted Pendulum

For double inverted pendulum multivariable, strong coupling and nonlinear proposed adaptive fuzzy neural inference system (ANFIS) is applied inverted pendulum stabilization control process. Adaptive control algorithm, fully able to meet the requirements of double inverted pendulum control, ANFIS system after training, will be applied to the inverted pendulum system controller has better control...

متن کامل

Friction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique

Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...

متن کامل

MINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL

This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...

متن کامل

An Impulse-Momentum Approach to Swing-Up Control of Double Inverted Pendulum on a Cart

The challenge in the swing-up problem of double inverted pendulum on a cart (DIPC) is to design a controller that bring all DIPC's states, especially the joint angles of the two links, into the region of attraction of the desired equilibrium. This paper proposes a new method to swing-up DIPC based on a series of restto-rest maneuvers of the first link about its vertically upright configuration ...

متن کامل

Intelligent Control for Self-erecting Inverted Pendulum Via Adaptive Neuro-fuzzy Inference System

A self-erecting single inverted pendulum (SESIP) is one of typical nonlinear systems. The control scheme running the SESIP consists of two main control loops. Namely, these control loops are swing-up controller and stabilization controller. A swing-up controller of an inverted pendulum system must actuate the pendulum from the stable position. While a stabilization controller must stand the pen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013